BCS SCHEME

USN												15EC744
-----	--	--	--	--	--	--	--	--	--	--	--	---------

Seventh Semester B.E. Degree Examination, Jan./Feb. 2023 Cryptography

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Write the Euclid's algorithm for determining the GCD of two positive integers. Find the 1 GCD of (1970, 1066) using Euclid's algorithm. (08 Marks)
 - Define the following terms with necessary axioms:
 - Groups
- Rings (ii)
- Fields

(08 Marks)

- Write the extended Euclid's algorithm for determining the GCD and multiplicative inverse 2 of two integers. Also find the GCD and multiplicative inverse of (4321, 1234). (08 Marks)
 - Mention the modular arithmetic properties of congruence with an example. b.

(06 Marks)

Define relatively prime. Mention an example.

(02 Marks)

Module-2

Draw the model of symmetric cryptosystem and explain it. 3

(08 Marks)

Encrypt the plain text "MONDAY" using Hill Cipher with the key show your

calculation and cipher text

(08 Marks)

OR

Explain with a schematic the classical Fiestel Cipher model. 4 a.

(08 Marks)

Discuss the concept of play fair cipher algorithm. Using this find the plain text if Cipher text b. is "OFTIBLDHXM" and key is COMPUTER. (08 Marks)

Module-3

With a neat diagram, explain the various steps involved in AES encryption algorithm. 5

(08 Marks)

With a neat diagram, explain linear feedback shift Registers.

(08 Marks)

With neat block diagram, explain AES key expansion. a.

(06 Marks)

- Write a note on:
 - Stream Ciphers using LFSR's. (i)
 - Design and analysis of Stream Ciphers. (ii)

(10 Marks)

Module-4

State and prove Fermats theorem. Determine Euler's totient function $\phi(24)$ and $\phi(35)$.

In a public key system using RSA, you intercept the Cipher text C = 10 sent to a user whose (08 Marks) public key is e = 5, n = 35. What is the plain text M?

OR

State and prove Chinese remainder theorem. Find x for the following equations: 8

(05 Marks) $X \equiv 2 \mod 5$, $X \equiv 6 \mod \log 9$

- b. Explain the distribution of secret key using the public key cryptography with confidentiality and authentication.
- In Diffie Hellman key exchange q = 71, its primitive root $\alpha = 7$. A's private key is 5, B's private key is 12. Find

(i) A's public key

- (ii) B's public key
- (iii) Shared secret key

(06 Marks)

Write an explanatory note on message authentication codes 9

(08 Marks)

Explain in detail, digital signature algorithm.

(08 Marks)

OR

- Define one way hash function. Explain the basic uses of hash function with a neat block 10 (10 Marks) diagram.
 - Write a note on discrete logarithm signature scheme.

(06 Marks)